Combining Sentinel-1 and -3 Imagery for Retrievals of Regional Multitemporal Biophysical Parameters Under a Deep Learning Framework
نویسندگان
چکیده
Regions with excessive cloud cover lead to limited feasibility of applying optical images monitor crop growth. In this study, we built an upsampling moving window network for regional growth monitoring (UMRCGM) model estimate the two key biophysical parameters (BPs), leaf area index (LAI) and canopy chlorophyll content (CCC) during main period winter wheat by using Sentinel-1 Synthetic Aperture Radar (SAR) Sentinel-3 images. imagery is unaffected cloudy weather has a wide width short revisit period, organic combination will greatly improve ability at scale. The impact different types SAR information (intensity polarization) on estimation BPs was further analyzed. UMRCGM optimized correspondence between inputs outputs, it had more accurate LAI CCC estimates compared three classical machine learning models, highest accuracy green-up stage wheat, followed jointing heading-filling stage, lowest found milk maturity stage. accuracies were slightly higher than that first stages while lower This study proposes new method (especially CCC) combining large differences in spatial resolution under deep framework.
منابع مشابه
Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery
In this paper, a semi-empirical algorithm for significant wave height (Hs) and mean wave period (Tmw) retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR) imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar loo...
متن کاملOil spill detection using in Sentinel-1 satellite images based on Deep learning concepts
Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...
متن کاملA Framework for Selecting Deep Learning Hyper-parameters
Recent research has found that deep learning architectures show significant improvements over traditional shallow algorithms when mining high dimensional datasets. When the choice of algorithm employed, hyper-parameter setting, number of hidden layers and nodes within a layer are combined, the identification of an optimal configuration can be a lengthy process. Our work provides a framework for...
متن کاملtransference of imagery: a comparative formalistic study of shakespeares hamlet and its two persian translations
هدف از این تحقیق بررسی انتقال صور خیال هملت در دو ترجمه ی فارسی آن از نظر فرمالیستی بود. برای بدست آوردن داده-های مورد نیاز، 130 نمونه استعاره، مجاز، ایهام، کنایه و پارادوکس در متن اصلی مشخص شده و سپس بر اساس مدل نیومارک (1998) برای ترجمه ی استعاره یا بطور کلی زبان مجاز با معادل های فارسی شان مقایسه گردیدند. این تحقیق بر آن بود تا روش های استفاده شده برای ترجمه هر کدام از انواع زبان مجاز ذکر شد...
15 صفحه اولtechnical and legal parameters for determination of river boundary,( case study haraz river)
چکیده با توسعه شهر نشینی و دخل و تصرف غیر مجاز در حریم رودخانه ها خسارات زیادی به رودخانه و محیط زیست اطراف آن وارده می شود. در حال حاضر بر اساس آئین نامه اصلاح شده بستر و حریم رودخانه ها، حریم کمی رودخانه که بلافاصله پس از بستر قرار می گیرد از 1 تا20 متر از منتهی الیه طرفین بستر رودخانه تعیین، که مقدار دقیق آن در هر بازه از رودخانه مشخص نیست. در کشورهای دیگر روشهای متفاوتی من جمله: درصد ریسک...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2022
ISSN: ['2151-1535', '1939-1404']
DOI: https://doi.org/10.1109/jstars.2022.3200735